Logo

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Large book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by

Publisher: Publish or Perish Inc.
ISBN/ASIN: 0849378745
Number of pages: 536

Description:
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary.

Home page url

Download or read it online for free here:
Download link
(DVI, PS)

Similar books

Book cover: SolitonsSolitons
by - University of Cambridge
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(11108 views)
Book cover: An Introduction to Topos PhysicsAn Introduction to Topos Physics
by - arXiv
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.
(10048 views)
Book cover: The Place of Partial Differential Equations in Mathematical PhysicsThe Place of Partial Differential Equations in Mathematical Physics
by - Patna University
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
(6594 views)
Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(19869 views)