Logo

Playing with Marbles: Structural and Thermodynamic Properties of Hard-Sphere Systems

Small book cover: Playing with Marbles: Structural and Thermodynamic Properties of Hard-Sphere Systems

Playing with Marbles: Structural and Thermodynamic Properties of Hard-Sphere Systems
by

Publisher: arXiv
Number of pages: 92

Description:
These lecture notes present an overview of equilibrium statistical mechanics of classical fluids, with special applications to the structural and thermodynamic properties of systems made of particles interacting via the hard-sphere potential or closely related model potentials.

Home page url

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: Simulations of Quantum Many Body SystemsSimulations of Quantum Many Body Systems
by - Louisiana State University
Contents: The Equilibrium Green Function Method; Dynamical Mean Field and Dynamical Cluster Approximation; Hirsh Fye and Continuous time Quantum Monte Carlo Methods; The Maximum Entropy Method for analytic continuation of QMC data; etc.
(7779 views)
Book cover: The ABC of Density Functional TheoryThe ABC of Density Functional Theory
by - University of California, Irvine
DFT is not just another way of solving the Schroedinger equation. Density functional theory is a completely different, rigorous way of approaching any interacting problem, by mapping it exactly to a much easier-to-solve non-interacting problem.
(8110 views)
Book cover: Percolation TheoryPercolation Theory
by - MIT
Percolation theory is the simplest model displaying a phase transition. The aim of the percolation theory course is to provide a challenging and stimulating introduction to a selection of topics within modern theoretical condensed matter physics.
(10694 views)
Book cover: Modern Computational Methods in SolidsModern Computational Methods in Solids
by - University of Wyoming
The purpose of this course is to introduce students to a series of paradigmatic physical problems in condensed matter, using the computer to solve them. The course will feel like a natural extension of introductory condensed matter.
(10883 views)