Logo

Machine Learning: The Complete Guide

Small book cover: Machine Learning: The Complete Guide

Machine Learning: The Complete Guide

Publisher: Wikipedia

Description:
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; Lazy learning and nearest neighbors; Decision Trees; Linear Classifiers; Statistical classification; Evaluation of Classification Models; Features Selection and Features Extraction; Clustering; etc.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Bayesian Reasoning and Machine LearningBayesian Reasoning and Machine Learning
by - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(13616 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(4555 views)
Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(3202 views)
Book cover: Optimal and Learning Control for Autonomous RobotsOptimal and Learning Control for Autonomous Robots
by - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(1406 views)