Algorithms for Reinforcement Learning
by Csaba Szepesvari
Publisher: Morgan and Claypool Publishers 2009
ISBN/ASIN: 1608454924
Number of pages: 98
Description:
In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books
A Survey of Statistical Network Models
by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(2682 views)
by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(2682 views)
Reinforcement Learning: An Introduction
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(15083 views)
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(15083 views)
Gaussian Processes for Machine Learning
by Carl E. Rasmussen, Christopher K. I. Williams - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(17100 views)
by Carl E. Rasmussen, Christopher K. I. Williams - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(17100 views)
Machine Learning: The Complete Guide
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5971 views)
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5971 views)