**Algorithms for Reinforcement Learning**

by Csaba Szepesvari

**Publisher**: Morgan and Claypool Publishers 2009**ISBN/ASIN**: 1608454924**Number of pages**: 98

**Description**:

In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**-

**OTexts**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**3928**views)

**Elements of Causal Inference: Foundations and Learning Algorithms**

by

**J. Peters, D. Janzing, B. Schölkopf**-

**The MIT Press**

This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...

(

**987**views)

**A First Encounter with Machine Learning**

by

**Max Welling**-

**University of California Irvine**

The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.

(

**4712**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**4546**views)