**Algorithms for Reinforcement Learning**

by Csaba Szepesvari

**Publisher**: Morgan and Claypool Publishers 2009**ISBN/ASIN**: 1608454924**Number of pages**: 98

**Description**:

In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**1353**views)

**Reinforcement Learning**

by

**C. Weber, M. Elshaw, N. M. Mayer**-

**InTech**

This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.

(

**14618**views)

**Gaussian Processes for Machine Learning**

by

**Carl E. Rasmussen, Christopher K. I. Williams**-

**The MIT Press**

Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.

(

**18623**views)

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**15701**views)