**Algebraic and Geometric Methods in Enumerative Combinatorics**

by Federico Ardila

**Publisher**: arXiv 2014**Number of pages**: 143

**Description**:

The guiding principle was to focus on algebraic and geometric techniques that are useful towards the solution of enumerative problems. The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Combinatorics Through Guided Discovery**

by

**Kenneth P. Bogart**-

**Dartmouth College**

This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.

(

**6641**views)

**Foundations of Combinatorics with Applications**

by

**Edward A. Bender, S. Gill Williamson**-

**Dover Publications**

This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.

(

**8044**views)

**Combinatorial Maps: Tutorial**

by

**Dainis Zeps**-

**Latvian University**

Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...

(

**4391**views)

**Combinatorial Theory**

by

**Gian-Carlo Rota**

In 1998, Gian-Carlo Rota gave his famous course at MIT. John N. Guidi took notes in a verbatim manner conveying the substance of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

(

**3464**views)