Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov
Publisher: arXiv 2014
Number of pages: 66
Description:
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The second section of the paper introduces the theory and discusses some problems in that context.
Download or read it online for free here:
Download link
(760KB, PDF)
Similar books
Combinatorial Knot Theory
by Louis H. Kauffman - University of Illinois at Chicago
This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.
(11215 views)
by Louis H. Kauffman - University of Illinois at Chicago
This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.
(11215 views)
A Geometric Approach to Differential Forms
by David Bachman - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(16361 views)
by David Bachman - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(16361 views)
Math That Makes You Go Wow
by M. Boittin, E. Callahan, D. Goldberg, J. Remes - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(15300 views)
by M. Boittin, E. Callahan, D. Goldberg, J. Remes - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(15300 views)
Knot Diagrammatics
by Louis H. Kauffman - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(7508 views)
by Louis H. Kauffman - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(7508 views)