Logo

Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory

Small book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory

Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by

Publisher: arXiv
Number of pages: 66

Description:
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The second section of the paper introduces the theory and discusses some problems in that context.

Home page url

Download or read it online for free here:
Download link
(760KB, PDF)

Similar books

Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(2710 views)
Book cover: High-dimensional Knot TheoryHigh-dimensional Knot Theory
by - Springer
This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
(7404 views)
Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5154 views)
Book cover: Foliations and the Geometry of 3-manifoldsFoliations and the Geometry of 3-manifolds
by - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(7471 views)