Logo

Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory

Small book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory

Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by

Publisher: arXiv
Number of pages: 66

Description:
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The second section of the paper introduces the theory and discusses some problems in that context.

Home page url

Download or read it online for free here:
Download link
(760KB, PDF)

Similar books

Book cover: An Introduction to Algebraic SurgeryAn Introduction to Algebraic Surgery
by - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(9651 views)
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(7530 views)
Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(16900 views)
Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(8623 views)