**The Geometry of General Relativity**

by Tevian Dray

**Publisher**: Oregon State University 2014**Number of pages**: 158

**Description**:

The manuscript emphasizes the use of differential forms, rather than tensors, which are barely mentioned. The focus is on the basic examples, namely the Schwarzschild black hole and the Friedmann-Robertson-Walker cosmological models. The material should be suitable for both advanced undergraduates and beginning graduate students in both mathematics and physics.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Vector Analysis and the Theory of Relativity**

by

**Francis Dominic Murnaghan**-

**Johns Hopkins press**

This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.

(

**11241**views)

**Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics**

by

**Mario Novello, Eduardo Bittencourt**-

**arXiv**

We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research...

(

**2476**views)

**Recent Developments in Gravitational Collapse and Spacetime Singularities**

by

**Pankaj S. Joshi, Daniele Malafarina**-

**arXiv**

The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. In this text, the authors discuss several of these developments here.

(

**7387**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**9507**views)