Logo

forall x: An Introduction to Formal Logic

Large book cover: forall x: An Introduction to Formal Logic

forall x: An Introduction to Formal Logic
by


ISBN/ASIN: B002ACW8VA
Number of pages: 160

Description:
forall x is an introduction to sentential logic and first-order predicate logic with identity, logical systems that significantly influenced twentieth-century analytic philosophy. After working through the material in this book, a student should be able to understand most quantified expressions that arise in their philosophical reading.

Home page url

Download or read it online for free here:
Download link
(0.6MB, PDF)

Similar books

Book cover: Notes on the Science of LogicNotes on the Science of Logic
by - University of Pittsburgh
This course assumes you know how to use truth functions and quantifiers as tools. Our task here is to study these very tools. Contents: logic of truth functional connectives; first order logic of extensional predicates, operators, and quantifiers.
(11651 views)
Book cover: The Algebra of LogicThe Algebra of Logic
by - Project Gutenberg
Mathematical Logic is a necessary preliminary to logical Mathematics. The present work is concerned with the 'calculus ratiocinator' aspect, and shows, in an admirably succinct form, the beauty of the calculus of logic regarded as an algebra.
(13229 views)
Book cover: A Second Course in LogicA Second Course in Logic
by - University of Cincinnati
This book is for anyone who has had a solid introductory logic course and wants more. Topics covered include soundness and completeness for first-order logic, Tarski's theorem on the undefinability of truth, Godel's incompleteness theorems, etc.
(13152 views)
Book cover: Introduction to Mathematical Logic: A problem solving courseIntroduction to Mathematical Logic: A problem solving course
by - arXiv
This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.
(14601 views)