Logo

Convergence of Stochastic Processes

Large book cover: Convergence of Stochastic Processes

Convergence of Stochastic Processes
by

Publisher: Springer
ISBN/ASIN: 1461297583
ISBN-13: 9781461297581
Number of pages: 223

Description:
An exposition od selected parts of empirical process theory, with related interesting facts about weak convergence, and applications to mathematical statistics. The high points of the book describe the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.

Home page url

Download or read it online for free here:
Download link
(8.6MB, PDF)

Similar books

Book cover: Basic Data Analysis and More: A Guided Tour Using PythonBasic Data Analysis and More: A Guided Tour Using Python
by - arXiv
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).
(8279 views)
Book cover: Topics in Random Matrix TheoryTopics in Random Matrix Theory
by
This is a textbook for a graduate course on random matrix theory, inspired by recent developments in the subject. This text focuses on foundational topics in random matrix theory upon which the most recent work has been based.
(7995 views)
Book cover: Introduction to Randomness and StatisticsIntroduction to Randomness and Statistics
by - arXiv
This is a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables.
(8339 views)
Book cover: Markov Chains and Mixing TimesMarkov Chains and Mixing Times
by - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(8584 views)