Convergence of Stochastic Processes
by D. Pollard
Publisher: Springer 1984
ISBN/ASIN: 1461297583
ISBN-13: 9781461297581
Number of pages: 223
Description:
An exposition od selected parts of empirical process theory, with related interesting facts about weak convergence, and applications to mathematical statistics. The high points of the book describe the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
Download or read it online for free here:
Download link
(8.6MB, PDF)
Similar books

by David Blackwell, at al. - IMS
The bulk of the articles in this volume are research articles in probability, statistics, gambling, game theory, Markov decision processes, set theory and logic, comparison of experiments, games of timing, merging of opinions, etc.
(10667 views)

by Muhammad El-Taha - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(24086 views)

by G. D'Agostini - arXiv
Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.
(13125 views)

by Thomas G. Kurtz - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(11334 views)