**Contributions to Fourier Analysis**

by A. Zygmund, et al.

**Publisher**: Princeton University Press 1950**ISBN/ASIN**: 0691079307**Number of pages**: 207

**Description**:

In the theory of convergence and summability, whether for ordinary Fourier series or other expansions, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**1669**views)

**Real Harmonic Analysis**

by

**Pascal Auscher, Lashi Bandara**-

**ANU eView**

This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.

(

**1033**views)

**Harmonic Function Theory**

by

**Sheldon Axler, Paul Bourdon, Wade Ramey**-

**Springer**

A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.

(

**9607**views)

**Lectures on Mean Periodic Functions**

by

**J.P. Kahane**-

**Tata Institute of Fundamental Research**

Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.

(

**5239**views)