**A Course Of Differential Geometry**

by John Edward Campbell

**Publisher**: Clarendon Press 1926**ISBN/ASIN**: B0043KO3RO**Number of pages**: 288

**Description**:

Table of contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; The minimal surface; Orthogonal surfaces; etc.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**12630**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**16387**views)

**Lectures on Differential Geometry**

by

**Wulf Rossmann**-

**University of Ottawa**

This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.

(

**7046**views)

**Notes on Differential Geometry**

by

**Noel J. Hicks**-

**Van Nostrand**

A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.

(

**8300**views)