Machine Learning and Data Mining: Lecture Notes
by Aaron Hertzmann
Publisher: University of Toronto 2010
Number of pages: 134
Description:
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; Monte Carlo Methods; Principal Components Analysis; Lagrange Multipliers; Clustering; Hidden Markov Models; Support Vector Machines; AdaBoost.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books
A First Encounter with Machine Learning
by Max Welling - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(13174 views)
by Max Welling - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(13174 views)
Introduction to Machine Learning
by Alex Smola, S.V.N. Vishwanathan - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(10278 views)
by Alex Smola, S.V.N. Vishwanathan - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(10278 views)
Reinforcement Learning
by C. Weber, M. Elshaw, N. M. Mayer - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(21987 views)
by C. Weber, M. Elshaw, N. M. Mayer - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(21987 views)
A Course in Machine Learning
by Hal Daumé III - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(22713 views)
by Hal Daumé III - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(22713 views)