**Machine Learning and Data Mining: Lecture Notes**

by Aaron Hertzmann

**Publisher**: University of Toronto 2010**Number of pages**: 134

**Description**:

Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; Monte Carlo Methods; Principal Components Analysis; Lagrange Multipliers; Clustering; Hidden Markov Models; Support Vector Machines; AdaBoost.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Lecture Notes in Machine Learning**

by

**Zdravko Markov**-

**Central Connecticut State University**

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...

(

**6365**views)

**Machine Learning for Designers**

by

**Patrick Hebron**-

**O'Reilly Media**

This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.

(

**3527**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**22435**views)

**Learning Deep Architectures for AI**

by

**Yoshua Bengio**-

**Now Publishers**

This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.

(

**4541**views)