Logo

A Course Of Mathematical Analysis

Large book cover: A Course Of Mathematical Analysis

A Course Of Mathematical Analysis
by

Publisher: S.Chand And Company
ISBN/ASIN: 8121904722
Number of pages: 494

Description:
Contents: Dedekind's theory of Real Numbers; Bounds and Limiting Points; Sequences; Real Valued Functions of a Real Variable - Limit and Continuity; The derivative; Riemann Theory of Integration; Uniform Convergence - Analytical theory of Trigonometric Functions; Improper Integrals; Fourier Series; etc.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(54693 views)
Book cover: How We Got From There to Here: A Story of Real AnalysisHow We Got From There to Here: A Story of Real Analysis
by - Open SUNY Textbooks
This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. The book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.
(2437 views)
Book cover: Mathematical Analysis IMathematical Analysis I
by - The Trillia Group
Topics include metric spaces, convergent sequences, open and closed sets, function limits and continuity, sequences and series of functions, compact sets, power series, Taylor's theorem, differentiation and integration, total variation, and more.
(10634 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(10465 views)