Categories and Modules
by Takahiro Kato
Publisher: viXra.org 2015
Number of pages: 323
Description:
Modules (also known as profunctors or distributors) and morphisms among them subsume categories and functors and provide more general and abstract framework to explore the theory of structures. In this book we generalize and redevelop the basic notions and results of category theory using this framework of modules.
Download or read it online for free here:
Download link
(2MB, PDF)
Similar books
An Introduction to Category Theory in Four Easy Movements
by A. Schalk, H. Simmons - Manchester University
Notes for a course offered as part of the MSc. in Mathematical Logic. From the table of contents: Development and exercises; Functors and natural transformations; Limits and colimits, a universal solution; Cartesian closed categories.
(6556 views)
by A. Schalk, H. Simmons - Manchester University
Notes for a course offered as part of the MSc. in Mathematical Logic. From the table of contents: Development and exercises; Functors and natural transformations; Limits and colimits, a universal solution; Cartesian closed categories.
(6556 views)
Category Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(6519 views)
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(6519 views)
Category Theory and Functional Programming
by Mikael Vejdemo-Johansson - University of St. Andrews
An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.
(6657 views)
by Mikael Vejdemo-Johansson - University of St. Andrews
An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.
(6657 views)
Mixed Motives
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(9103 views)
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(9103 views)