Logo

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Small book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by

Publisher: arXiv
Number of pages: 96

Description:
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Lecture Notes on General RelativityLecture Notes on General Relativity
by - Universitaet Bern
The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.
(9374 views)
Book cover: General Relativity Without CalculusGeneral Relativity Without Calculus
by - Springer
This book was written as a guide for a one week course aimed at exceptional students in their final years of secondary education. The course was intended to provide a quick but nontrivial introduction to Einstein's general theory of relativity.
(6927 views)
Book cover: Introduction to relativistic astrophysics and cosmology through MapleIntroduction to relativistic astrophysics and cosmology through Maple
by - arXiv
The author presents the pedagogical introduction to relativistic astrophysics and cosmology, which is based on computational and graphical resources of Maple 6. The knowledge of basics of general relativity and differential geometry is supposed.
(12748 views)
Book cover: Complex Geometry of Nature and General RelativityComplex Geometry of Nature and General Relativity
by - arXiv
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.
(12728 views)