**A Friendly Introduction to Differential Equations**

by Mohammed K A Kaabar

2015**ISBN/ASIN**: 1506004539**Number of pages**: 164

**Description**:

In this book, there are five chapters: The Laplace Transform, Systems of Homogeneous Linear Differential Equations (HLDE), Methods of First and Higher Orders Differential Equations, Extended Methods of First and Higher Orders Differential Equations, and Applications of Differential Equations. In addition, there are exercises at the end of each chapter above to let students practice additional sets of problems other than examples.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Introduction to the Galois Theory of Linear Differential Equations**

by

**Michael F. Singer**-

**arXiv**

The author's goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on examples.

(

**8107**views)

**Ordinary Differential Equations: A Systems Approach**

by

**Bruce P. Conrad**

This is a revision of a text that was on the market for a while. It focuses on systems of differential equations. Some popular topics, which were present in the original text, have been left out to concentrate on the initial value problem.

(

**7520**views)

**Nonlinear Analysis and Differential Equations**

by

**Klaus Schmitt, Russell C. Thompson**-

**University of Utah**

The intent of this set of notes is to present several of the important existence theorems for solutions of various types of problems associated with differential equations and provide qualitative and quantitative descriptions of solutions.

(

**10449**views)

**Differential Equations and Linear Algebra**

by

**Simon J.A. Malham**-

**Heriot-Watt University**

From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.

(

**7111**views)