Logo

A Friendly Introduction to Differential Equations

Large book cover: A Friendly Introduction to Differential Equations

A Friendly Introduction to Differential Equations
by


ISBN/ASIN: 1506004539
Number of pages: 164

Description:
In this book, there are five chapters: The Laplace Transform, Systems of Homogeneous Linear Differential Equations (HLDE), Methods of First and Higher Orders Differential Equations, Extended Methods of First and Higher Orders Differential Equations, and Applications of Differential Equations. In addition, there are exercises at the end of each chapter above to let students practice additional sets of problems other than examples.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Introduction to the Galois Theory of Linear Differential EquationsIntroduction to the Galois Theory of Linear Differential Equations
by - arXiv
The author's goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on examples.
(9763 views)
Book cover: A First Course in Elementary Differential EquationsA First Course in Elementary Differential Equations
by - Arkansas Tech University
Contents: Basic Terminology; Qualitative Analysis: Direction Field of y'=f(t,y); Existence and Uniqueness of Solutions to First Order Linear IVP; Solving First Order Linear Homogeneous DE; Solving First Order Linear Non Homogeneous DE; etc.
(10544 views)
Book cover: Differential Equations with YouTube ExamplesDifferential Equations with YouTube Examples
by - BookBoon
This book, together with the linked YouTube videos, reviews a first course on differential equations. The purpose is to help students prepare for their exams. Theory is summarized, and the solutions of questions are demonstrated in YouTube videos.
(5688 views)
Book cover: Linearization via the Lie DerivativeLinearization via the Lie Derivative
by - American Mathematical Society
The proof of the Grobman-Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. We present a proof that avoids the discrete case.
(8004 views)