Differential Geometry Of Three Dimensions
by C.E. Weatherburn
Publisher: Cambridge University Press 1955
ISBN/ASIN: 1295658879
Number of pages: 281
Description:
The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by Gabriel Lugo - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(15317 views)

by David W. Henderson - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(1943 views)

by Theodore Shifrin - University of Georgia
Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).
(5191 views)

by Richard Koch - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(9213 views)