Logo

Differential Geometry Of Three Dimensions

Large book cover: Differential Geometry Of Three Dimensions

Differential Geometry Of Three Dimensions
by

Publisher: Cambridge University Press
ISBN/ASIN: 1295658879
Number of pages: 281

Description:
The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(15317 views)
Book cover: Differential Geometry: A Geometric IntroductionDifferential Geometry: A Geometric Introduction
by - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(1943 views)
Book cover: Differential Geometry: A First Course in Curves and SurfacesDifferential Geometry: A First Course in Curves and Surfaces
by - University of Georgia
Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).
(5191 views)
Book cover: Differential Geometry Course NotesDifferential Geometry Course Notes
by - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(9213 views)