Logo

Differential Geometry Of Three Dimensions

Large book cover: Differential Geometry Of Three Dimensions

Differential Geometry Of Three Dimensions
by

Publisher: Cambridge University Press
ISBN/ASIN: 1295658879
Number of pages: 281

Description:
The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Differential GeometryDifferential Geometry
by - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(7473 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(16026 views)
Book cover: Lectures on Differential GeometryLectures on Differential Geometry
by - University of Ottawa
This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.
(6762 views)
Book cover: Course of Differential GeometryCourse of Differential Geometry
by - Samizdat Press
Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.
(10587 views)