Logo

An Introduction to Theoretical Fluid Dynamics

Small book cover: An Introduction to Theoretical Fluid Dynamics

An Introduction to Theoretical Fluid Dynamics
by

Publisher: New York University
Number of pages: 177

Description:
This course will deal with a mathematical idealization of common fluids such as air or water. The main idealization is embodied in the notion of a continuum and our 'fluids' will generally be identified with a certain connected set of points in RN, where we will consider dimension N to be 1, 2, or 3.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Water Waves: The Mathematical Theory With ApplicationsWater Waves: The Mathematical Theory With Applications
by - Interscience Publishers
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications.
(10726 views)
Book cover: Solution of the Cauchy problem for the Navier - Stokes and Euler equationsSolution of the Cauchy problem for the Navier - Stokes and Euler equations
by - arXiv
Solutions of the Navier-Stokes and Euler equations with initial conditions (Cauchy problem) for two and three dimensions are obtained in the convergence series form by the iterative method using the Fourier and Laplace transforms in this paper.
(8511 views)
Book cover: Using Multiscale Norms to Quantify Mixing and TransportUsing Multiscale Norms to Quantify Mixing and Transport
by - arXiv
Mixing is relevant to many areas of science and engineering, including the pharmaceutical and food industries, oceanography, atmospheric sciences, etc. In all these situations one goal is to improve the degree of homogenisation of a substance.
(7479 views)
Book cover: Topics in dynamics I: FlowsTopics in dynamics I: Flows
by - Princeton University Press
Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.
(16130 views)