Logo

Understanding Machine Learning: From Theory to Algorithms

Large book cover: Understanding Machine Learning: From Theory to Algorithms

Understanding Machine Learning: From Theory to Algorithms
by

Publisher: Cambridge University Press
ISBN/ASIN: 1107057132
ISBN-13: 9781107057135
Number of pages: 449

Description:
The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Optimal and Learning Control for Autonomous RobotsOptimal and Learning Control for Autonomous Robots
by - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(1279 views)
Book cover: The LION Way: Machine Learning plus Intelligent OptimizationThe LION Way: Machine Learning plus Intelligent Optimization
by - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(14726 views)
Book cover: Boosting: Foundations and AlgorithmsBoosting: Foundations and Algorithms
by - The MIT Press
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.
(1539 views)
Book cover: Statistical Learning and Sequential PredictionStatistical Learning and Sequential Prediction
by - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(1863 views)