Logo

Understanding Machine Learning: From Theory to Algorithms

Large book cover: Understanding Machine Learning: From Theory to Algorithms

Understanding Machine Learning: From Theory to Algorithms
by

Publisher: Cambridge University Press
ISBN/ASIN: 1107057132
ISBN-13: 9781107057135
Number of pages: 449

Description:
The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: An Introduction to Probabilistic ProgrammingAn Introduction to Probabilistic Programming
by - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(620 views)
Book cover: Bayesian Reasoning and Machine LearningBayesian Reasoning and Machine Learning
by - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(13612 views)
Book cover: Practical Artificial Intelligence Programming in JavaPractical Artificial Intelligence Programming in Java
by - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(16820 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(3945 views)