Understanding Machine Learning: From Theory to Algorithms
by Shai Shalev-Shwartz, Shai Ben-David
Publisher: Cambridge University Press 2014
ISBN/ASIN: 1107057132
ISBN-13: 9781107057135
Number of pages: 449
Description:
The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.
Download or read it online for free here:
Download link
(2.5MB, PDF)
Similar books
Introduction to Machine Learningby Amnon Shashua - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(24423 views)
Machine Learningby Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(18227 views)
A Survey of Statistical Network Modelsby A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(10278 views)
Optimal and Learning Control for Autonomous Robotsby Jonas Buchli, et al. - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(7246 views)