Introduction to Analysis
by Ray Mayer
Publisher: Reed College 2006
Number of pages: 291
Description:
Contents: Notation, Undefined Concepts, Examples; Fields; Induction and Integers; Complexification of a Field; Real Numbers; Complex Numbers; Complex Sequences; Continuity; Properties of Continuous Functions; The Derivative; Infinite Series; Power Series; etc.
Download or read it online for free here:
Download link
(2.9MB, PDF)
Similar books

by Guenther Hoermann, Roland Steinbauer - Universitaet Wien
From the table of contents: 1. Test Functions and Distributions; 2. Differentiation, Differential Operators; 3. Basic Constructions; 4. Convolution; 5. Fourier Transform and Temperate Distributions; 6. Regularity; 7. Fundamental Solutions.
(6599 views)

by Victor Guillemin, Shlomo Sternberg - Harvard University
In semi-classical analysis many of the basic results involve asymptotic expansions in which the terms can by computed by symbolic techniques and the focus of these lecture notes will be the 'symbol calculus' that this creates.
(9895 views)

by Gerald Teschl - American Mathematical Society
Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.
(10389 views)

by Raghavan Narasimhan - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
(8505 views)