Introduction to Complexity Theory
by Oded Goldreich
1999
Number of pages: 375
Description:
Complexity Theory is a central field of Theoretical Computer Science, with a remarkable list of celebrated achievements as well as a very vibrant present research activity. The field is concerned with the study of the intrinsic complexity of computational tasks, and this study tend to aim at generality: It focuses on natural computational resources, and the effect of limiting those on the class of problems that can be solved. These lecture notes were taken by students attending my year-long introductory course on Complexity Theory, given in 1998-99 at the Weizmann Institute of Science. The course was aimed at exposing the students to the basic results and research directions in the field. The focus was on concepts and ideas, and complex technical proofs were avoided. It was assumed that students have taken a course in computability, and hence are familiar with Turing Machines.
Download or read it online for free here:
Download link
(2.3MB, PDF)
Similar books

by Tim Roughgarden - Stanford University
The two biggest goals of the course are: 1. Learn several canonical problems that have proved the most useful for proving lower bounds; 2. Learn how to reduce lower bounds for fundamental algorithmic problems to communication complexity lower bounds.
(6762 views)

- Wikibooks
This book is intended as an introductory textbook in Computability Theory and Complexity Theory, with an emphasis on Formal Languages. Its target audience is CS and Math students with some background in programming and data structures.
(9849 views)

by Herbert S. Wilf - AK Peters, Ltd.
An introductory textbook on the design and analysis of algorithms. Recursive algorithms are illustrated by Quicksort, FFT, and fast matrix multiplications. Algorithms in number theory are discussed with some applications to public key encryption.
(22173 views)

by Oded Goldreich - Cambridge University Press
The book gives the mathematical underpinnings for cryptography; this includes one-way functions, pseudorandom generators, and zero-knowledge proofs. Throughout, definitions are complete and detailed; proofs are rigorous and given in full.
(17589 views)