**Statistical Learning and Sequential Prediction**

by Alexander Rakhlin, Karthik Sridharan

**Publisher**: University of Pennsylvania 2014**Number of pages**: 261

**Description**:

This course will focus on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. Beyond the theoretical analysis, we will discuss learning algorithms and, in particular, an important connection between learning and optimization.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**7359**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**5453**views)

**Introduction to Machine Learning for the Sciences**

by

**Titus Neupert, et al.**-

**arXiv.org**

This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.

(

**496**views)

**Optimal and Learning Control for Autonomous Robots**

by

**Jonas Buchli, et al.**-

**arXiv.org**

The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

(

**3721**views)