Logo

Probabilistic Models in the Study of Language

Small book cover: Probabilistic Models in the Study of Language

Probabilistic Models in the Study of Language
by

Publisher: University of California, San Diego
Number of pages: 274

Description:
A textbook on the topic of using probabilistic models in scientific work on language ranging from experimental data analysis to corpus work to cognitive modeling. The intended audience is graduate students in linguistics, psychology, cognitive science, and computer science who are interested in using probabilistic models to study language.

Home page url

Download or read it online for free here:
Download link
(4.5MB, PDF)

Similar books

Book cover: A Maximum Entropy Approach to Natural Language ProcessingA Maximum Entropy Approach to Natural Language Processing
by - Association for Computational Linguistics
The authors describe a method for statistical modeling based on maximum entropy. They present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently.
(5365 views)
Book cover: Natural Language Processing with PythonNatural Language Processing with Python
by - O'Reilly Media
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies. With it, you'll learn how to write Python programs that work with large collections of unstructured text.
(9652 views)
Book cover: Prolog and Natural-Language AnalysisProlog and Natural-Language Analysis
by - Center for the Study of Language
A concise introduction to logic programming and the logic-programming language Prolog both as vehicles for understanding elementary computational linguistics and as tools for implementing the basic components of natural-language-processing systems.
(13704 views)
Book cover: Speech and Language ProcessingSpeech and Language Processing
by - Stanford University
This text takes an empirical approach to the subject, based on applying statistical and machine-learning algorithms to large corporations. The authors describe a unified vision of speech and language processing. Emphasis is on practical applications.
(2171 views)