Statistical Foundations of Machine Learning
by Gianluca Bontempi, Souhaib Ben Taieb
2017
Number of pages: 269
Description:
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. In particular, we focus on supervised learning problems, where the goal is to model the relation between a set of input variables, and one or more output variables, which are considered to be dependent on the inputs in some manner.
Download or read it online for free here:
Download link
(7MB, PDF)
Similar books
Inductive Logic Programming: Theory and Methods
by Stephen Muggleton, Luc de Raedt - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(36571 views)
by Stephen Muggleton, Luc de Raedt - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(36571 views)
Introduction to Machine Learning for the Sciences
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3627 views)
by Titus Neupert, et al. - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3627 views)
Statistical Learning and Sequential Prediction
by Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(7073 views)
by Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(7073 views)
Reinforcement Learning: An Introduction
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(27943 views)
by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(27943 views)