**Statistical Foundations of Machine Learning**

by Gianluca Bontempi, Souhaib Ben Taieb

2017**Number of pages**: 269

**Description**:

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. In particular, we focus on supervised learning problems, where the goal is to model the relation between a set of input variables, and one or more output variables, which are considered to be dependent on the inputs in some manner.

Download or read it online for free here:

**Download link**

(7MB, PDF)

## Similar books

**Reinforcement Learning and Optimal Control**

by

**Dimitri P. Bertsekas**-

**Athena Scientific**

The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.

(

**5048**views)

**Statistical Learning and Sequential Prediction**

by

**Alexander Rakhlin, Karthik Sridharan**-

**University of Pennsylvania**

This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...

(

**4496**views)

**Algorithms for Reinforcement Learning**

by

**Csaba Szepesvari**-

**Morgan and Claypool Publishers**

We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.

(

**5556**views)

**Inductive Logic Programming: Theory and Methods**

by

**Stephen Muggleton, Luc de Raedt**-

**ScienceDirect**

Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.

(

**30791**views)