Logo

A Primer on Quantum Fluids by Carlo F. Barenghi, Nick G. Parker

Large book cover: A Primer on Quantum Fluids

A Primer on Quantum Fluids
by

Publisher: Springer
ISBN/ASIN: 3319424742
ISBN-13: 9783319424743
Number of pages: 132

Description:
This book introduces the theoretical description and properties of quantum fluids. The focus is on gaseous atomic Bose-Einstein condensates and, to a minor extent, superfluid helium, but the underlying concepts are relevant to other forms of quantum fluids such as polariton and photonic condensates. The book is pitched at the level of advanced undergraduates and early postgraduate students.

Home page url

Download or read it online for free here:
Download link
(6.9MB, PDF)

Similar books

Book cover: Making, probing and understanding ultracold Fermi gasesMaking, probing and understanding ultracold Fermi gases
by - arXiv
This text summarizes the experimental frontier of ultra cold fermionic gases. It is based on three lectures which one of the authors gave at the Varenna summer school describing the experimental techniques used to study ultracold fermionic gases.
(3446 views)
Book cover: The Condensed Matter Physics of QCDThe Condensed Matter Physics of QCD
by - arXiv
Important progress in understanding the behavior of hadronic matter at high density has been achieved recently. We discuss the phase diagram of QCD as a function of temperature and density, and close with a look at possible astrophysical signatures.
(6115 views)
Book cover: Quantum Theory of Condensed MatterQuantum Theory of Condensed Matter
by - Oxford University
I aim to discuss a reasonably wide range of quantum-mechanical phenomena from condensed matter physics, with an emphasis mainly on physical ideas. The most important prerequisite is some understanding of second quantization for fermions and bosons.
(4252 views)
Book cover: Quantum Condensed Matter PhysicsQuantum Condensed Matter Physics
by - University of California
Contents: Basic Formalism; Goldstone Modes and Spontaneous Symmetry Breaking; Critical Fluctuations and Phase Transitions; Symmetry-Breaking In Fermion Systems; Gauge Fields and Fractionalization; Localized and Extended Excitations in Dirty Systems.
(5586 views)