**An Introduction to Real Analysis**

by John K. Hunter

**Publisher**: University of California Davis 2014**Number of pages**: 305

**Description**:

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Analysis Tools with Applications**

by

**Bruce K. Driver**-

**Springer**

These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.

(

**10664**views)

**Fundamentals of Analysis**

by

**W W L Chen**-

**Macquarie University**

Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.

(

**12204**views)

**An Introductory Course Of Mathematical Analysis**

by

**Charles Walmsley**-

**Cambridge University Press**

Originally published in 1926, this text was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. A prominence is given to inequalities.

(

**2320**views)

**Mathematical Analysis I**

by

**Elias Zakon**-

**The Trillia Group**

Topics include metric spaces, convergent sequences, open and closed sets, function limits and continuity, sequences and series of functions, compact sets, power series, Taylor's theorem, differentiation and integration, total variation, and more.

(

**11227**views)