**An Introduction to Real Analysis**

by John K. Hunter

**Publisher**: University of California Davis 2014**Number of pages**: 305

**Description**:

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Foundations of Analysis**

by

**Joseph L. Taylor**

The goal is to develop in students the mathematical maturity they will need when they move on to senior level mathematics courses, and to present a rigorous development of the calculus, beginning with the properties of the real number system.

(

**1269**views)

**Introduction to Infinitesimal Analysis: Functions of One Real Variable**

by

**N. J. Lennes**-

**John Wiley & Sons**

This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.

(

**7704**views)

**Introduction to Real Analysis**

by

**Lee Larson**-

**University of Louisville**

From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.

(

**1961**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**9222**views)