Logo

Computational Linguistics by Igor Boshakov, Alexander Gelbukh

Small book cover: Computational Linguistics

Computational Linguistics
by


ISBN/ASIN: 9703601472
Number of pages: 198

Description:
The contents of the book are based on the course on computational linguistics that has been delivered by the authors since 1997 at the Center for Computing Research, National Polytechnic Institute, Mexico City. The book focuses on the basic set of ideas and facts from the fundamental science necessary for the creation of intelligent language processing tools, without going deeply into the details of specific algorithms or toy systems.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Speech and Language ProcessingSpeech and Language Processing
by - Stanford University
This text takes an empirical approach to the subject, based on applying statistical and machine-learning algorithms to large corporations. The authors describe a unified vision of speech and language processing. Emphasis is on practical applications.
(1523 views)
Book cover: Natural Language Processing for the Working ProgrammerNatural Language Processing for the Working Programmer
by
We will go into many of the techniques that so-called computational linguists use to analyze the structure of human language, and transform it into a form that computers work with. We chose Haskell as the main programming language for this book.
(8047 views)
Book cover: Natural Language Processing for Prolog ProgrammersNatural Language Processing for Prolog Programmers
by - Prentice-Hall
Designed to bridge the gap for those who know Prolog but have no background in linguistics, this book concentrates on turning theories into practical techniques. Coverage includes template and keyword systems, definite clause grammars, and more.
(4887 views)
Book cover: A Maximum Entropy Approach to Natural Language ProcessingA Maximum Entropy Approach to Natural Language Processing
by - Association for Computational Linguistics
The authors describe a method for statistical modeling based on maximum entropy. They present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently.
(4994 views)