Logo

Machine Learning, Neural and Statistical Classification

Large book cover: Machine Learning, Neural and Statistical Classification

Machine Learning, Neural and Statistical Classification
by

Publisher: Ellis Horwood
ISBN/ASIN: 013106360X
ISBN-13: 9780131063600
Number of pages: 298

Description:
The aim of this book is to provide an up-to-date review of different approaches to classification, compare their performance on a wide range of challenging data-sets, and draw conclusions on their applicability to realistic industrial problems. As the book's title suggests. a wide variety of approaches has been taken towards this task. Three main historical strands of research can be identified: statistical, machine learning and neural network.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Boosting: Foundations and AlgorithmsBoosting: Foundations and Algorithms
by - The MIT Press
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.
(6954 views)
Book cover: Reinforcement LearningReinforcement Learning
by - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(21986 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(9654 views)
Book cover: Reinforcement Learning: An IntroductionReinforcement Learning: An Introduction
by - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(27936 views)