**Machine Learning, Neural and Statistical Classification**

by D. Michie, D. J. Spiegelhalter

**Publisher**: Ellis Horwood 1994**ISBN/ASIN**: 013106360X**ISBN-13**: 9780131063600**Number of pages**: 298

**Description**:

The aim of this book is to provide an up-to-date review of different approaches to classification, compare their performance on a wide range of challenging data-sets, and draw conclusions on their applicability to realistic industrial problems. As the book's title suggests. a wide variety of approaches has been taken towards this task. Three main historical strands of research can be identified: statistical, machine learning and neural network.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**An Introduction to Probabilistic Programming**

by

**Jan-Willem van de Meent, et al.**-

**arXiv.org**

This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.

(

**390**views)

**Machine Learning for Data Streams**

by

**Albert Bifet, et al.**-

**The MIT Press**

This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.

(

**912**views)

**Bayesian Reasoning and Machine Learning**

by

**David Barber**-

**Cambridge University Press**

The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.

(

**12403**views)

**Machine Learning and Data Mining: Lecture Notes**

by

**Aaron Hertzmann**-

**University of Toronto**

Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.

(

**4303**views)