Mathematical Concepts of Quantum Mechanics

Small book cover: Mathematical Concepts of Quantum Mechanics

Mathematical Concepts of Quantum Mechanics

Publisher: University of Toronto
Number of pages: 185

These lectures cover a one term course taken by a mixed group of students specializing either in mathematics or physics. We decided to select material which illustrates an interplay of ideas from various fields of mathematics, such as operator theory, probability, differential equations, and differential geometry.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Mathematical Methods in Quantum MechanicsMathematical Methods in Quantum Mechanics
by - American Mathematical Society
This is a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required.
Book cover: Uncertainty and Exclusion Principles in Quantum MechanicsUncertainty and Exclusion Principles in Quantum Mechanics
by - arXiv.org
These are lecture notes for a master-level course given at KTH, Stockholm, in the spring of 2017, with the primary aim of proving the stability of matter from first principles using modern mathematical methods in many-body quantum mechanics.
Book cover: Symplectic Geometry of Quantum NoiseSymplectic Geometry of Quantum Noise
by - arXiv
We discuss a quantum counterpart of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. They can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics.
Book cover: Geometry of Quantum MechanicsGeometry of Quantum Mechanics
by - Stockholms universitet, Fysikum
These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.