**Introduction to the Theory of Fourier's Series and Integrals**

by H. S. Carslaw

**Publisher**: Macmillan and co. 1921**ISBN/ASIN**: 0486600483**Number of pages**: 346

**Description**:

As an introductory explanation of the theory of Fourier's series, this clear, detailed text is outstanding. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and the second theorem of mean value, enlarged sets of examples on infinite series and integrals, and a section dealing with the Riemann Lebeague theorem and its consequences.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**6847**views)

**Chebyshev and Fourier Spectral Methods**

by

**John P. Boyd**-

**Dover Publications**

The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.

(

**14342**views)

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**11793**views)

**Lectures on Mean Periodic Functions**

by

**J.P. Kahane**-

**Tata Institute of Fundamental Research**

Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.

(

**5538**views)