Logo

Modeling Agents with Probabilistic Programs

Small book cover: Modeling Agents with Probabilistic Programs

Modeling Agents with Probabilistic Programs
by

Publisher: AgentModels.org
Number of pages: 345

Description:
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases and bounded rationality. The book assumes basic programming experience but is otherwise self-contained.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Reinforcement Learning: An IntroductionReinforcement Learning: An Introduction
by - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(14987 views)
Book cover: Practical Artificial Intelligence Programming in JavaPractical Artificial Intelligence Programming in Java
by - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(15167 views)
Book cover: The LION Way: Machine Learning plus Intelligent OptimizationThe LION Way: Machine Learning plus Intelligent Optimization
by - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(10936 views)
Book cover: Machine Learning: The Complete GuideMachine Learning: The Complete Guide
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5946 views)