Logo

Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics

Large book cover: Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics

Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics
by

Publisher: MDPI AG
ISBN-13: 9783038425014
Number of pages: 370

Description:
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal. This book could serve to illustrate the important aspect of symmetry problems in physics.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(9879 views)
Book cover: Lectures on Nonlinear Waves And ShocksLectures on Nonlinear Waves And Shocks
by - Tata Institute Of Fundamental Research
Introduction to certain aspects of gas dynamics concentrating on some of the most important nonlinear problems, important not only from the engineering or computational point of view but also because they offer great mathematical challenges.
(5088 views)
Book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index TheoremInvariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by - Publish or Perish Inc.
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.
(5976 views)
Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(14384 views)