**An Introduction to Combinatorics and Graph Theory**

by David Guichard

**Publisher**: Whitman College 2017**Number of pages**: 153

**Description**:

This book walks the reader through the classic parts of Combinatorics and graph theory, while also discussing some recent progress in the area. Contents: Fundamentals; Inclusion-Exclusion; Generating Functions; Systems of Distinct Representatives; Graph Theory; Polya-Redfield Counting.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**6340**views)

**Applied Combinatorics**

by

**S. E. Payne**-

**University of Colorado**

These notes deal with enumerative combinatorics. The author included some traditional material and some truly nontrivial material, albeit with a treatment that makes it accessible to the student. He derives a variety of techniques for counting.

(

**12615**views)

**Combinatorics Through Guided Discovery**

by

**Kenneth P. Bogart**-

**Dartmouth College**

This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.

(

**6365**views)

**Combinatorial Maps: Tutorial**

by

**Dainis Zeps**-

**Latvian University**

Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...

(

**4114**views)