Galois Theory: Lectures Delivered at the University of Notre Dame
by Emil Artin
Publisher: University of Notre Dame 1971
Number of pages: 96
Description:
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
Lectures on the Algebraic Theory of Fields
by K.G. Ramanathan - Tata Institute of Fundamental Research
These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.
(11133 views)
by K.G. Ramanathan - Tata Institute of Fundamental Research
These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.
(11133 views)
Notes on Galois Theory
by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(9585 views)
by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(9585 views)
Class Field Theory
by J. S. Milne
Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.
(11728 views)
by J. S. Milne
Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.
(11728 views)
Lectures on Field Theory and Ramification Theory
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(10661 views)
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(10661 views)