Logo

A Friendly Introduction to Mathematical Logic

Large book cover: A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic
by

Publisher: Milne Library Publishing
ISBN-13: 9781942341079
Number of pages: 380

Description:
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Logic for Computer ScienceLogic for Computer Science
- Wikibooks
This book provides a survey of mathematical logic and its various applications. After covering basic material of propositional logic and first-order logic, the course presents the foundations of finite model theory and descriptive complexity.
(10816 views)
Book cover: Formal LogicFormal Logic
- Wikibooks
An undergraduate college level textbook covering first order predicate logic with identity but omitting metalogical proofs. The first rules of formal logic were written over 2300 years ago by Aristotle and are still vital.
(15280 views)
Book cover: Topics in Logic and FoundationsTopics in Logic and Foundations
by - The Pennsylvania State University
This is a set of lecture notes from a 15-week graduate course at the Pennsylvania State University. The course covered some topics which are important in contemporary mathematical logic and foundations but usually omitted from introductory courses.
(5783 views)
Book cover: forall x: An Introduction to Formal Logicforall x: An Introduction to Formal Logic
by
An introduction to sentential logic and first-order predicate logic with identity, logical systems that influenced twentieth-century analytic philosophy. The book should help students understand quantified expressions in their philosophical reading.
(18600 views)