Around Kolmogorov Complexity: Basic Notions and Results
by Alexander Shen
Publisher: arXiv.org 2015
Number of pages: 51
Description:
Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. This report covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness, effective Hausdorff dimension.
Download or read it online for free here:
Download link
(300KB, PDF)
Similar books

by John Daugman - University of Cambridge
The aims of this course are to introduce the principles and applications of information theory. The course will study how information is measured in terms of probability and entropy, and the relationships among conditional and joint entropies; etc.
(17721 views)

by Peter D. Gruenwald, Paul M.B. Vitanyi - CWI
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain this quantitative approach to defining information and discuss the extent to which Kolmogorov's and Shannon's theory have a common purpose.
(7358 views)

by Mark M. Wilde - arXiv
The aim of this book is to develop 'from the ground up' many of the major developments in quantum Shannon theory. We study quantum mechanics for quantum information theory, we give important unit protocols of teleportation, super-dense coding, etc.
(7057 views)

by Frederic Barbaresco, Ali Mohammad-Djafari - MDPI AG
The aim of this book is to provide an overview of current work addressing topics of research that explore the geometric structures of information and entropy. This survey will motivate readers to explore the emerging domain of Science of Information.
(4192 views)