**Data Assimilation: A Mathematical Introduction**

by K.J.H. Law, A.M. Stuart, K.C. Zygalakis

**Publisher**: arXiv.org 2015**ISBN-13**: 9783319203256**Number of pages**: 158

**Description**:

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online.

Download or read it online for free here:

**Download link**

(2.2MB, PDF)

## Similar books

**Robust Optimization**

by

**A. Ben-Tal, L. El Ghaoui, A. Nemirovski**-

**Princeton University Press**

Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of this relatively new approach to optimization.

(

**9400**views)

**An Introduction to Nonlinear Optimization Theory**

by

**Marius Durea, Radu Strugariu**-

**De Gruyter Open**

Starting with the case of differentiable data and the classical results on constrained optimization problems, continuing with the topic of nonsmooth objects involved in optimization, the book concentrates on both theoretical and practical aspects.

(

**6347**views)

**Convex Optimization: Algorithms and Complexity**

by

**Sebastien Bubeck**-

**arXiv.org**

This text presents the main complexity theorems in convex optimization and their algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural and stochastic optimization.

(

**4787**views)

**Optimal Stopping and Applications**

by

**Thomas S. Ferguson**-

**UCLA**

From the table of contents: Stopping Rule Problems; Finite Horizon Problems; The Existence of Optimal Rules; Applications. Markov Models; Monotone Stopping Rule Problems; Maximizing the Rate of Return; Bandit Problems; Solutions to the Exercises.

(

**11440**views)