Logo

Boosting: Foundations and Algorithms

Large book cover: Boosting: Foundations and Algorithms

Boosting: Foundations and Algorithms
by

Publisher: The MIT Press
ISBN-13: 9780262310413
Number of pages: 544

Description:
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(4891 views)
Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(6294 views)
Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(3449 views)
Book cover: Optimal and Learning Control for Autonomous RobotsOptimal and Learning Control for Autonomous Robots
by - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(1640 views)