The Hermitian Two Matrix Model with an Even Quartic Potential
by M. Duits, A.B.J. Kuijlaars, M. Yue Mo
Publisher: American Mathematical Society 2012
ISBN/ASIN: 0821869280
ISBN-13: 9780821869284
Number of pages: 118
Description:
The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result of the paper is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices. The vector equilibrium problem is defined for three measures, with external fields on the first and third measures and an upper constraint on the second measure.
Download or read it online for free here:
Download link
(1.3MB, PDF)
Similar books

by G. Donald Allen - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.
(17066 views)

by Hassan Abid Yasser (ed.) - InTech
This book contains selected topics in linear algebra, which represent the recent contributions in the field. It includes a range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, etc.
(12883 views)

by Robert Forsyth Scott - Cambridge University Press
In the present treatise I have attempted to give an exposition of the Theory of Determinants and their more important applications. The treatise uses Grassmann's alternate units, by means of which the study of determinants is much simplified.
(6680 views)

by William Thomson
Every important principle has been illustrated by copious examples, a considerable number of which have been fully worked out. As my main object has been to produce a textbook suitable for beginners, many important theorems have been omitted.
(8795 views)