Logo

Commutative Algebra and Noncommutative Algebraic Geometry

Large book cover: Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry
by

Publisher: Cambridge University Press
Number of pages: 775

Description:
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These two volumes reflect the lively interaction between the subjects.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple PDF files)

Similar books

Book cover: The CRing Project: a collaborative open source textbook on commutative algebraThe CRing Project: a collaborative open source textbook on commutative algebra
by - CRing Project
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.
(5325 views)
Book cover: Theory and Applications of Lattice Point Methods for Binomial IdealsTheory and Applications of Lattice Point Methods for Binomial Ideals
by - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
(5466 views)
Book cover: A Primer of Commutative AlgebraA Primer of Commutative Algebra
by
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(5466 views)
Book cover: Commutative AlgebraCommutative Algebra
- Wikibooks
This wikibook is intended to give an introduction to commutative algebra; i.e. it shall comprehensively describe the most important commutative algebraic objects. The axiom of choice will be used, although there is no indication that it is true.
(2085 views)