Logo

Commutative Algebra and Noncommutative Algebraic Geometry

Large book cover: Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry
by

Publisher: Cambridge University Press
Number of pages: 775

Description:
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These two volumes reflect the lively interaction between the subjects.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple PDF files)

Similar books

Book cover: Trends in Commutative AlgebraTrends in Commutative Algebra
by - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(11532 views)
Book cover: Introduction to Commutative AlgebraIntroduction to Commutative Algebra
by - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(10806 views)
Book cover: A Quick Review of Commutative AlgebraA Quick Review of Commutative Algebra
by - Indian Institute of Technology, Bombay
These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.
(10908 views)
Book cover: A Course In Commutative AlgebraA Course In Commutative Algebra
by - University of Illinois
This is a text for a basic course in commutative algebra, it should be accessible to those who have studied algebra at the beginning graduate level. The book should help the student reach an advanced level as quickly and efficiently as possible.
(18393 views)