**Symplectic, Poisson, and Noncommutative Geometry**

by Tohru Eguchi, et al.

**Publisher**: Cambridge University Press 2014**ISBN-13**: 9781107056411**Number of pages**: 290

**Description**:

Symplectic geometry has its origin in physics, but has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics; for example, Floer theory has contributed new insights to quantum field theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**8839**views)

**Lecture Notes on Embedded Contact Homology**

by

**Michael Hutchings**-

**arXiv**

These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples.

(

**4016**views)

**Contact Geometry**

by

**Hansjoerg Geiges**-

**arXiv**

This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

(

**7338**views)

**First Steps Towards a Symplectic Dynamics**

by

**Barney Bramham, Helmut Hofer**-

**arXiv**

Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.

(

**6978**views)