Memristor and Memristive Neural Networks
by Alex Pappachen James (ed.)
Publisher: InTech 2018
ISBN-13: 9789535139485
Number of pages: 324
Description:
This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books

by Rolf Pfeifer, Dana Damian, Rudolf Fuchslin - University of Zurich
Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, etc.
(12690 views)

by Kenji Suzuki (ed.) - InTech
Artificial neural networks may be the single most successful technology in the last two decades. The purpose of this book is to provide recent advances in architectures, methodologies, and applications of artificial neural networks.
(16190 views)

by Mark Watson - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(26008 views)

by Xiaolin Hu, P. Balasubramaniam - InTech
The concept of neural network originated from neuroscience, and one of its aims is to help us understand the principle of the central nerve system through mathematical modeling. The first part of the book is dedicated to this aim.
(14584 views)