**Toposes, Triples and Theories**

by Michael Barr, Charles Wells

**Publisher**: Springer-Verlag 2005**ISBN/ASIN**: 0387961151**ISBN-13**: 9780387961156**Number of pages**: 302

**Description**:

As its title suggests, this book is an introduction to three ideas and the connections between them. Chapter 1 is an introduction to category theory which develops the basic constructions in categories needed for the rest of the book. Chapters 2, 3 and 4 introduce each of the three topics of the title and develop them independently up to a certain point. We assume that the reader is familiar with concepts typically developed in first-year graduate courses, such as group, ring, topological space, and so on.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Higher-Dimensional Categories: an illustrated guide book**

by

**Eugenia Cheng, Aaron Lauda**-

**University of Sheffield**

This work gives an explanatory introduction to various definitions of higher-dimensional category. The emphasis is on ideas rather than formalities; the aim is to shed light on the formalities by emphasizing the intuitions that lead there.

(

**9755**views)

**Computational Category Theory**

by

**D.E. Rydeheard, R.M. Burstall**

The book is a bridge-building exercise between computer programming and category theory. Basic constructions of category theory are expressed as computer programs. It is a first attempt at connecting the abstract mathematics with concrete programs.

(

**14804**views)

**Category Theory in Context**

by

**Emily Riehl**-

**Dover Publications**

This is a concise, original text for a one-semester introduction to the subject. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, monads, etc.

(

**1452**views)

**Functors and Categories of Banach Spaces**

by

**Peter W. Michor**-

**Springer**

The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.

(

**7111**views)