**Toposes, Triples and Theories**

by Michael Barr, Charles Wells

**Publisher**: Springer-Verlag 2005**ISBN/ASIN**: 0387961151**ISBN-13**: 9780387961156**Number of pages**: 302

**Description**:

As its title suggests, this book is an introduction to three ideas and the connections between them. Chapter 1 is an introduction to category theory which develops the basic constructions in categories needed for the rest of the book. Chapters 2, 3 and 4 introduce each of the three topics of the title and develop them independently up to a certain point. We assume that the reader is familiar with concepts typically developed in first-year graduate courses, such as group, ring, topological space, and so on.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Categories and Homological Algebra**

by

**Pierre Schapira**-

**UPMC**

These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.

(

**4998**views)

**Higher Algebra**

by

**Jacob Lurie**-

**Harvard University**

Contents: Stable infinite-Categories; infinite-Operads; Algebras and Modules over infinte-Operads; Associative Algebras and Their Modules; Little Cubes and Factorizable Sheaves; Algebraic Structures on infinite-Categories; and more.

(

**9798**views)

**Higher Operads, Higher Categories**

by

**Tom Leinster**-

**arXiv**

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.

(

**7333**views)

**Computational Category Theory**

by

**D.E. Rydeheard, R.M. Burstall**

The book is a bridge-building exercise between computer programming and category theory. Basic constructions of category theory are expressed as computer programs. It is a first attempt at connecting the abstract mathematics with concrete programs.

(

**12209**views)