**Symbolic Tensor Calculus on Manifolds: a SageMath Implementation**

by Eric Gourgoulhon, Marco Mancini

**Publisher**: arXiv.org 2018**Number of pages**: 72

**Description**:

These lecture notes present a method for symbolic tensor calculus that (i) runs on fully specified smooth manifolds (described by an atlas), (ii) is not limited to a single coordinate chart or vector frame, (iii) runs even on non-parallelizable manifolds and (iv) is independent of the symbolic engine employed to perform calculus at the level of coordinate expressions.

Download or read it online for free here:

**Download link**

(3.6MB, PDF)

## Similar books

**Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis**

by

**Ray M. Bowen, C.-C. Wang**

The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.

(

**18849**views)

**Tensor Analysis**

by

**Edward Nelson**-

**Princeton Univ Pr**

The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

(

**19594**views)

**Introduction to Tensor Calculus**

by

**Kees Dullemond, Kasper Peeters**-

**University of Heidelberg**

This booklet contains an explanation about tensor calculus for students of physics and engineering with a basic knowledge of linear algebra. The focus lies on acquiring an understanding of the principles and ideas underlying the concept of 'tensor'.

(

**8316**views)

**An Introduction to Tensors for Students of Physics and Engineering**

by

**Joseph C. Kolecki**-

**Glenn Research Center**

The book should serve as a bridge to the place where most texts on tensor analysis begin. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.

(

**9173**views)