Logo

Lectures notes on compact Riemann surfaces

Small book cover: Lectures notes on compact Riemann surfaces

Lectures notes on compact Riemann surfaces
by

Publisher: arXiv.org
Number of pages: 119

Description:
This is an introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

Home page url

Download or read it online for free here:
Download link
(2.2MB, PDF)

Similar books

Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(10573 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(6763 views)
Book cover: Lectures on Differential GeometryLectures on Differential Geometry
by - University of California
Foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms.
(7520 views)
Book cover: An Introduction to Riemannian GeometryAn Introduction to Riemannian Geometry
by - Lund University
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.
(10604 views)