**Lectures notes on compact Riemann surfaces**

by Bertrand Eynard

**Publisher**: arXiv.org 2018**Number of pages**: 119

**Description**:

This is an introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

Download or read it online for free here:

**Download link**

(2.2MB, PDF)

## Similar books

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**9787**views)

**Riemannian Geometry: Definitions, Pictures, and Results**

by

**Adam Marsh**-

**arXiv**

A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.

(

**2573**views)

**Lectures on Geodesics in Riemannian Geometry**

by

**M. Berger**-

**Tata Institute of Fundamental Research**

The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.

(

**5377**views)

**Riemannian Geometry**

by

**Ilkka Holopainen, Tuomas Sahlsten**

Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.

(

**4179**views)