
Lectures notes on compact Riemann surfaces
by Bertrand Eynard
Publisher: arXiv.org 2018
Number of pages: 119
Description:
This is an introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
Download or read it online for free here:
Download link
(2.2MB, PDF)
Similar books
Complex Analysis on Riemann Surfacesby Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(15559 views)
Riemannian Geometry: Definitions, Pictures, and Resultsby Adam Marsh - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(8157 views)
Riemann Surfaces, Dynamics and Geometryby Curtis McMullen - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(15748 views)
Lectures on Differential Geometryby John Douglas Moore - University of California
Foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms.
(12943 views)