Logo

Real Harmonic Analysis by Pascal Auscher, Lashi Bandara

Small book cover: Real Harmonic Analysis

Real Harmonic Analysis
by

Publisher: ANU eView
ISBN-13: 9781921934087
Number of pages: 113

Description:
This book presents the material covered in graduate lectures delivered at The Australian National University in 2010. Moving from the classical periodic setting to the real line, then to higher dimensional Euclidean spaces and finally to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.

Home page url

Download or read it online for free here:
Download link
(940KB, PDF)

Similar books

Book cover: Lectures on Mean Periodic FunctionsLectures on Mean Periodic Functions
by - Tata Institute of Fundamental Research
Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.
(5733 views)
Book cover: Chebyshev and Fourier Spectral MethodsChebyshev and Fourier Spectral Methods
by - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(14580 views)
Book cover: Harmonic Function TheoryHarmonic Function Theory
by - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(10098 views)
Book cover: Lectures on Topics in Mean Periodic Functions and the Two-Radius TheoremLectures on Topics in Mean Periodic Functions and the Two-Radius Theorem
by - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(5433 views)