Logo

Seeing Theory: A visual introduction to probability and statistics

Small book cover: Seeing Theory: A visual introduction to probability and statistics

Seeing Theory: A visual introduction to probability and statistics
by

Publisher: Brown University
Number of pages: 66

Description:
The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher on the material.

Home page url

Download or read it online for free here:
Download link
(320KB, PDF)

Similar books

Book cover: Applied Nonparametric RegressionApplied Nonparametric Regression
by - Cambridge University Press
Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.
(20803 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(11515 views)
Book cover: Introduction to Probability and Statistics Using RIntroduction to Probability and Statistics Using R
by
A textbook for an undergraduate course in probability and statistics. The prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
(5002 views)
Book cover: Introduction Probaility and StatisticsIntroduction Probaility and Statistics
by - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(21889 views)