The Fourth Dimension
by Charles Howard Hinton
Publisher: S. Sonnenschein & Co. 1906
Number of pages: 288
Description:
C. H. Hinton discusses the subject of the higher dimensionality of space, his aim being to avoid mathematical subtleties and technicalities, and thus enable his argument to be followed by readers who are not sufficiently conversant with mathematics to follow these processes of reasoning.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by Maximilian Kreuzer - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(18701 views)

by Jozsef Sandor - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(19546 views)

by Derrick Norman Lehmer - Project Gutenberg
The book gives, in a simple way, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.
(13423 views)

by Rene De Vogelaere - arXiv
The purpose of this book is to give an exposition of geometry, from a point of view which complements Klein's Erlangen program. The emphasis is on extending the classical Euclidean geometry to the finite case, but it goes beyond that.
(2125 views)