Logo

Elements of Causal Inference: Foundations and Learning Algorithms

Large book cover: Elements of Causal Inference: Foundations and Learning Algorithms

Elements of Causal Inference: Foundations and Learning Algorithms
by

Publisher: The MIT Press
ISBN-13: 9780262037310
Number of pages: 289

Description:
This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.

Home page url

Download or read it online for free here:
Download link
(21MB, PDF)

Similar books

Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(16334 views)
Book cover: Reinforcement LearningReinforcement Learning
by - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(15272 views)
Book cover: Lecture Notes in Machine LearningLecture Notes in Machine Learning
by - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(4909 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(4376 views)