Elements of Causal Inference: Foundations and Learning Algorithms
by J. Peters, D. Janzing, B. Schölkopf
Publisher: The MIT Press 2017
ISBN-13: 9780262037310
Number of pages: 289
Description:
This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.
Download or read it online for free here:
Download link
(21MB, PDF)
Similar books
Statistical Learning and Sequential Prediction
by Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(7069 views)
by Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(7069 views)
Statistical Foundations of Machine Learning
by Gianluca Bontempi, Souhaib Ben Taieb
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(9654 views)
by Gianluca Bontempi, Souhaib Ben Taieb
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(9654 views)
Machine Learning
by Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(16891 views)
by Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(16891 views)
Lecture Notes in Machine Learning
by Zdravko Markov - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(9651 views)
by Zdravko Markov - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(9651 views)