Logo

Elements of Causal Inference: Foundations and Learning Algorithms

Large book cover: Elements of Causal Inference: Foundations and Learning Algorithms

Elements of Causal Inference: Foundations and Learning Algorithms
by

Publisher: The MIT Press
ISBN-13: 9780262037310
Number of pages: 289

Description:
This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.

Home page url

Download or read it online for free here:
Download link
(21MB, PDF)

Similar books

Book cover: A First Encounter with Machine LearningA First Encounter with Machine Learning
by - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(7018 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(6388 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(5527 views)
Book cover: Learning Deep Architectures for AILearning Deep Architectures for AI
by - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(4368 views)