**Elements of Causal Inference: Foundations and Learning Algorithms**

by J. Peters, D. Janzing, B. Schölkopf

**Publisher**: The MIT Press 2017**ISBN-13**: 9780262037310**Number of pages**: 289

**Description**:

This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.

Download or read it online for free here:

**Download link**

(21MB, PDF)

## Similar books

**Lecture Notes in Machine Learning**

by

**Zdravko Markov**-

**Central Connecticut State University**

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...

(

**7002**views)

**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by

**T. Hastie, R. Tibshirani, J. Friedman**-

**Springer**

This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.

(

**36174**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**13529**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**6650**views)