Logo

Machine Learning for Data Streams

Large book cover: Machine Learning for Data Streams

Machine Learning for Data Streams
by

Publisher: The MIT Press
ISBN-13: 9780262037792
Number of pages: 288

Description:
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: The Elements of Statistical Learning: Data Mining, Inference, and PredictionThe Elements of Statistical Learning: Data Mining, Inference, and Prediction
by - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(42561 views)
Book cover: Foundations of Machine LearningFoundations of Machine Learning
by - The MIT Press
This is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools.
(7506 views)
Book cover: An Introduction to Probabilistic ProgrammingAn Introduction to Probabilistic Programming
by - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5887 views)
Book cover: Practical Artificial Intelligence Programming in JavaPractical Artificial Intelligence Programming in Java
by - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(26581 views)