Logo

Machine Learning for Data Streams

Large book cover: Machine Learning for Data Streams

Machine Learning for Data Streams
by

Publisher: The MIT Press
ISBN-13: 9780262037792
Number of pages: 288

Description:
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: A First Encounter with Machine LearningA First Encounter with Machine Learning
by - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(4213 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(3390 views)
Book cover: The LION Way: Machine Learning plus Intelligent OptimizationThe LION Way: Machine Learning plus Intelligent Optimization
by - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(12056 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(15275 views)