**Machine Learning for Data Streams**

by Albert Bifet, et al.

**Publisher**: The MIT Press 2017**ISBN-13**: 9780262037792**Number of pages**: 288

**Description**:

This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Learning Deep Architectures for AI**

by

**Yoshua Bengio**-

**Now Publishers**

This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.

(

**5323**views)

**An Introduction to Probabilistic Programming**

by

**Jan-Willem van de Meent, et al.**-

**arXiv.org**

This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.

(

**2925**views)

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**6574**views)

**Machine Learning and Data Mining: Lecture Notes**

by

**Aaron Hertzmann**-

**University of Toronto**

Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.

(

**7325**views)